Skip to the content.

Robotics with Webots

This guide will walk you through integrating Webots robotics simulator with SnapThink to create powerful robotics development workflows.

Prerequisites

Install Webots

  1. Download Webots from cyberbotics.com
  2. Follow installation instructions for your platform:
    • macOS: Mount the DMG and drag to Applications
    • Windows: Run the installer as administrator
    • Linux: Extract and add to PATH

Verify Installation

# Check Webots is accessible from command line
webots --version

# Should output something like: Webots R2023b

Quick Start: Your First Robot Simulation

Step 1: Create a New Notebook

  1. Open SnapThink
  2. Click “New Document” → “Python Notebook”
  3. Name it “My First Robot Simulation”

Step 2: Set Up Webots Connection

# Initialize Webots connection
import sys
sys.path.append('/Applications/Webots.app/lib/controller/python')  # macOS
# sys.path.append('C:/Program Files/Webots/lib/controller/python')  # Windows
# sys.path.append('/usr/local/webots/lib/controller/python')  # Linux

from controller import Robot, Motor, DistanceSensor

# Create robot instance
robot = Robot()

# Get simulation timestep
timestep = int(robot.getBasicTimeStep())

print("✅ Connected to Webots simulation!")
print(f"Simulation timestep: {timestep}ms")

Step 3: Load a Robot World

# For this example, we'll use the built-in e-puck robot
# In Webots: File → Open World → projects/robots/gctronic/e-puck/worlds/e-puck.wbt

# Initialize robot components
left_motor = robot.getDevice('left wheel motor')
right_motor = robot.getDevice('right wheel motor')

# Set motors to velocity control
left_motor.setPosition(float('inf'))
right_motor.setPosition(float('inf'))
left_motor.setVelocity(0.0)
right_motor.setVelocity(0.0)

# Initialize distance sensors
distance_sensors = []
sensor_names = ['ps0', 'ps1', 'ps2', 'ps3', 'ps4', 'ps5', 'ps6', 'ps7']

for name in sensor_names:
    sensor = robot.getDevice(name)
    sensor.enable(timestep)
    distance_sensors.append(sensor)

print("🤖 Robot initialized with motors and sensors")

Step 4: Implement Basic Behavior

# Simple obstacle avoidance behavior
def run_obstacle_avoidance():
    step_count = 0
    max_steps = 1000  # Run for limited time
    
    # Record data for analysis
    sensor_history = []
    position_history = []
    
    while robot.step(timestep) != -1 and step_count < max_steps:
        # Read sensor values
        sensor_values = [sensor.getValue() for sensor in distance_sensors]
        sensor_history.append(sensor_values.copy())
        
        # Simple obstacle avoidance logic
        left_speed = 6.28  # Base speed
        right_speed = 6.28
        
        # If obstacles detected in front, turn
        if sensor_values[0] > 80 or sensor_values[7] > 80:  # Front-left or front-right
            # Turn right
            left_speed = 6.28
            right_speed = -6.28
        elif sensor_values[1] > 80 or sensor_values[2] > 80:  # Left side
            # Turn right
            left_speed = 6.28
            right_speed = 3.14
        elif sensor_values[5] > 80 or sensor_values[6] > 80:  # Right side
            # Turn left  
            left_speed = 3.14
            right_speed = 6.28
        
        # Apply motor speeds
        left_motor.setVelocity(left_speed)
        right_motor.setVelocity(right_speed)
        
        step_count += 1
        
        # Record position (simplified)
        position_history.append({
            'step': step_count,
            'time': step_count * timestep / 1000.0,
            'sensors': sensor_values,
            'motors': [left_speed, right_speed]
        })
    
    print(f"✅ Simulation completed - {step_count} steps")
    return sensor_history, position_history

# Run the simulation
print("🚀 Starting obstacle avoidance simulation...")
sensor_data, position_data = run_obstacle_avoidance()

Step 5: Analyze Results with AI

# Analyze the robot's behavior
import matplotlib.pyplot as plt
import numpy as np

# Extract data for plotting
times = [p['time'] for p in position_data]
front_sensors = [p['sensors'][0] + p['sensors'][7] for p in position_data]  # Combined front sensors
motor_diff = [abs(p['motors'][0] - p['motors'][1]) for p in position_data]  # Turn intensity

# Create visualization
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8))

# Plot sensor readings over time
ax1.plot(times, front_sensors, 'b-', linewidth=2, label='Front Obstacle Detection')
ax1.set_xlabel('Time (seconds)')
ax1.set_ylabel('Sensor Value')
ax1.set_title('Robot Obstacle Detection Over Time')
ax1.grid(True)
ax1.legend()

# Plot turning behavior
ax2.plot(times, motor_diff, 'r-', linewidth=2, label='Turning Intensity')
ax2.set_xlabel('Time (seconds)')
ax2.set_ylabel('Motor Speed Difference')
ax2.set_title('Robot Turning Behavior')
ax2.grid(True)
ax2.legend()

plt.tight_layout()
plt.show()

# Calculate performance metrics
avg_obstacle_proximity = np.mean(front_sensors)
total_turning = np.sum(motor_diff)
simulation_time = times[-1]

print(f"📊 Simulation Analysis:")
print(f"   • Total simulation time: {simulation_time:.2f} seconds")
print(f"   • Average obstacle proximity: {avg_obstacle_proximity:.1f}")
print(f"   • Total turning activity: {total_turning:.1f}")
print(f"   • Obstacles encountered: {len([x for x in front_sensors if x > 80])}")

Now ask the AI to analyze your results:

“Can you analyze this robot’s obstacle avoidance performance? What improvements would you suggest for the algorithm?”

Advanced Integration Examples

1. Multi-Robot Coordination

# Example: Two robots working together
class MultiRobotController:
    def __init__(self):
        self.robots = []
        self.robot_positions = []
        
    def add_robot(self, robot_name):
        # In Webots, load a world with multiple robots
        robot = Robot()
        self.robots.append(robot)
        print(f"Added robot: {robot_name}")
    
    def coordinate_movement(self):
        # Implement formation keeping or task distribution
        for i, robot in enumerate(self.robots):
            # Assign different behaviors to each robot
            if i == 0:
                self.leader_behavior(robot)
            else:
                self.follower_behavior(robot, i)
    
    def leader_behavior(self, robot):
        # Leader explores the environment
        pass
    
    def follower_behavior(self, robot, robot_id):
        # Followers maintain formation with leader
        pass

# Ask AI to help implement coordination algorithms
multi_robot = MultiRobotController()

2. Computer Vision Integration

# Robot with camera sensor
def setup_camera_robot():
    robot = Robot()
    camera = robot.getDevice('camera')
    camera.enable(timestep)
    
    return robot, camera

def process_camera_data(camera):
    # Get camera image
    image = camera.getImage()
    width = camera.getWidth()
    height = camera.getHeight()
    
    # Convert to numpy array for processing
    import numpy as np
    
    # Webots image is in BGRA format
    image_array = np.frombuffer(image, np.uint8).reshape((height, width, 4))
    
    # Convert BGRA to RGB
    rgb_image = image_array[:, :, [2, 1, 0]]  # BGR to RGB
    
    return rgb_image

# Use this with AI for object detection:
# "Can you help me detect red objects in this camera image?"

3. Machine Learning Integration

# Collect training data from simulation
class RobotDataCollector:
    def __init__(self):
        self.training_data = []
    
    def collect_sensor_data(self, robot, action_taken):
        # Get current sensor state
        sensor_values = [sensor.getValue() for sensor in distance_sensors]
        
        # Record state-action pair for learning
        data_point = {
            'sensors': sensor_values,
            'action': action_taken,
            'timestamp': robot.getTime()
        }
        
        self.training_data.append(data_point)
    
    def export_training_data(self):
        import pandas as pd
        df = pd.DataFrame(self.training_data)
        df.to_csv('robot_training_data.csv', index=False)
        print(f"Exported {len(self.training_data)} training samples")

# Use with AI for behavior learning:
# "Can you train a neural network on this robot behavior data?"

Real-World Project Workflows

Project 1: Autonomous Warehouse Robot

# Step 1: Design the warehouse environment in Webots
# - Create shelving units, boxes, charging stations
# - Add floor markers for navigation

# Step 2: Implement robot controller
class WarehouseRobot:
    def __init__(self):
        self.robot = Robot()
        self.state = "idle"  # idle, navigating, picking, returning
        self.inventory = []
        self.target_location = None
    
    def navigate_to_shelf(self, shelf_id):
        # Use Webots GPS and compass for navigation
        gps = self.robot.getDevice('gps')
        compass = self.robot.getDevice('compass')
        # Implementation details...
    
    def pick_item(self, item_id):
        # Control gripper to pick items
        gripper = self.robot.getDevice('gripper')
        # Implementation details...

# Step 3: Ask AI for optimization
# "How can I optimize the robot's path planning for multiple pickups?"

Project 2: Search and Rescue Robot

# Simulate disaster scenarios
class SearchRescueRobot:
    def __init__(self):
        self.robot = Robot()
        self.victims_found = []
        self.explored_areas = set()
    
    def explore_unknown_terrain(self):
        # Use SLAM algorithms for mapping
        # Ask AI: "Implement a frontier-based exploration algorithm"
        pass
    
    def detect_victims(self):
        # Use camera and thermal sensors
        # Ask AI: "Help me detect human heat signatures in thermal images"
        pass
    
    def plan_rescue_path(self):
        # Optimize path to reach all victims
        # Ask AI: "Find the shortest path visiting all victim locations"
        pass

# Test in various disaster scenarios
rescue_robot = SearchRescueRobot()

Project 3: Agricultural Monitoring Drone

# Simulate crop monitoring with aerial robots
class AgricultureDrone:
    def __init__(self):
        self.robot = Robot()  # Drone in Webots
        self.crop_health_data = []
        self.flight_path = []
    
    def plan_survey_flight(self, field_boundaries):
        # Generate optimal flight path for coverage
        # Ask AI: "Create a lawn mower pattern for field coverage"
        pass
    
    def analyze_crop_health(self, camera_image):
        # Use computer vision for health assessment
        # Ask AI: "Detect diseased plants in this aerial image"
        pass
    
    def generate_health_map(self):
        # Create spatial map of crop conditions
        import matplotlib.pyplot as plt
        # Visualization code...

# Integrate with weather data and growth models
ag_drone = AgricultureDrone()

Advanced Features

Custom Robot Models

# Load custom robot from URDF or Webots proto files
def load_custom_robot(robot_file_path):
    # In Webots: File → Import → Robot
    # Then connect via Python API
    
    robot = Robot()
    
    # Auto-discover available devices
    devices = []
    device_count = robot.getNumberOfDevices()
    
    for i in range(device_count):
        device = robot.getDeviceByIndex(i)
        device_name = device.getName()
        device_type = device.getNodeType()
        devices.append({'name': device_name, 'type': device_type})
    
    print(f"Found {len(devices)} devices on robot:")
    for device in devices:
        print(f"  • {device['name']} ({device['type']})")
    
    return robot, devices

# Ask AI to help configure your custom robot:
# "Help me set up controllers for my 6-DOF robotic arm"

Physics Parameter Tuning

# Optimize simulation realism
def tune_physics_parameters():
    # Access world physics settings through Webots API
    # Adjust gravity, friction, damping, etc.
    
    physics_configs = [
        {'gravity': -9.81, 'friction': 0.8, 'bounce': 0.2},
        {'gravity': -9.81, 'friction': 1.0, 'bounce': 0.1},
        {'gravity': -9.81, 'friction': 0.6, 'bounce': 0.3},
    ]
    
    results = []
    for config in physics_configs:
        # Run simulation with different physics
        result = run_robot_test(config)
        results.append(result)
    
    # Ask AI to analyze which configuration is most realistic
    return results

# "Which physics parameters give the most realistic robot behavior?"

Performance Monitoring

# Monitor simulation performance and robot metrics
class PerformanceMonitor:
    def __init__(self):
        self.metrics = {
            'simulation_fps': [],
            'robot_speed': [],
            'energy_consumption': [],
            'task_completion_time': [],
            'collision_count': 0
        }
    
    def update_metrics(self, robot):
        # Collect real-time performance data
        current_speed = self.calculate_robot_speed(robot)
        self.metrics['robot_speed'].append(current_speed)
        
        # Monitor energy usage
        motor_power = self.calculate_motor_power(robot)
        self.metrics['energy_consumption'].append(motor_power)
    
    def generate_performance_report(self):
        # Create comprehensive performance analysis
        import pandas as pd
        
        report = pd.DataFrame(self.metrics)
        
        # Ask AI to analyze performance trends
        return report

monitor = PerformanceMonitor()

Troubleshooting Guide

Common Issues and Solutions

Connection Problems

# Test Webots connection
def test_webots_connection():
    try:
        robot = Robot()
        timestep = robot.getBasicTimeStep()
        print(f"✅ Webots connected - timestep: {timestep}ms")
        return True
    except Exception as e:
        print(f"❌ Connection failed: {e}")
        print("Solutions:")
        print("1. Ensure Webots is running")
        print("2. Check Python path includes Webots controller library")
        print("3. Verify world file has robot controller set to '<extern>'")
        return False

test_webots_connection()

Performance Issues

# Optimize simulation speed
def optimize_simulation():
    # Reduce rendering quality for faster simulation
    # In Webots: View → Rendering → Fast
    
    # Adjust physics timestep
    # Larger timestep = faster simulation, less accuracy
    # Smaller timestep = slower simulation, more accuracy
    
    recommended_settings = {
        'timestep': 32,  # milliseconds
        'rendering': 'fast',
        'run_mode': 'run',  # not real-time
        'physics_iterations': 1
    }
    
    print("Recommended settings for performance:")
    for key, value in recommended_settings.items():
        print(f"  • {key}: {value}")

optimize_simulation()

Memory Usage

# Monitor and optimize memory usage
import psutil
import os

def monitor_memory():
    process = psutil.Process(os.getpid())
    memory_mb = process.memory_info().rss / 1024 / 1024
    
    print(f"Current memory usage: {memory_mb:.1f} MB")
    
    if memory_mb > 1000:  # More than 1GB
        print("⚠️ High memory usage detected")
        print("Solutions:")
        print("1. Reduce data collection frequency")
        print("2. Clear old simulation data")
        print("3. Restart simulation periodically")
    
    return memory_mb

# Run periodically during long simulations
current_memory = monitor_memory()

Best Practices

Code Organization

# Structure your robotics projects
"""
robotics_project/
├── robots/          # Robot controller code
├── worlds/          # Webots world files  
├── data/           # Simulation results
├── analysis/       # Data analysis notebooks
└── docs/           # Project documentation
"""

# Use classes for robot controllers
class BaseRobotController:
    def __init__(self, robot_name):
        self.robot = Robot()
        self.name = robot_name
        self.initialize_devices()
    
    def initialize_devices(self):
        # Override in subclasses
        pass
    
    def run_behavior(self):
        # Override in subclasses  
        pass

class NavigationRobot(BaseRobotController):
    def initialize_devices(self):
        # Specific device setup for navigation
        pass

Experimental Design

# Design reproducible experiments
class RoboticsExperiment:
    def __init__(self, experiment_name):
        self.name = experiment_name
        self.parameters = {}
        self.results = []
        self.random_seed = 12345
    
    def set_parameters(self, **params):
        self.parameters.update(params)
    
    def run_trial(self, trial_number):
        # Set random seed for reproducibility
        import random
        random.seed(self.random_seed + trial_number)
        
        # Run simulation trial
        result = self.execute_simulation()
        self.results.append(result)
        
        return result
    
    def analyze_results(self):
        # Statistical analysis of results
        # Ask AI: "Analyze these experimental results for significance"
        pass

# Example usage
exp = RoboticsExperiment("Obstacle Avoidance Performance")
exp.set_parameters(robot_speed=2.0, sensor_range=0.5)

Documentation and Sharing

# Always document your robotics projects:

## Project: Autonomous Navigation Robot
**Objective**: Develop obstacle avoidance for mobile robot
**Environment**: Office-like setting with furniture obstacles
**Robot**: Differential drive robot with 8 distance sensors
**Algorithm**: Reactive obstacle avoidance with wall following

### Results Summary
- Successfully navigated 95% of test scenarios
- Average completion time: 45 seconds
- Energy efficiency: 15% better than baseline

### Key Insights from AI Analysis
- Robot tends to favor right turns (bias in algorithm)
- Performance degrades in narrow corridors
- Sensor fusion could improve obstacle detection

### Future Improvements
- Implement path planning for global navigation
- Add camera for better obstacle classification
- Test in dynamic environments with moving obstacles

Resources and Next Steps

Webots Learning Resources

Integration with SnapThink Features

Community and Support

Ready to build amazing robots? Start with the quick start example above and ask the AI for help along the way!